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Abstract

Aim: Estimating the current spatial variation of biomass in the Amazon rain forest is a challenge and

remains a source of substantial uncertainty in the assessment of the global carbon cycle. Precise esti-

mates need to consider small-scale variations of forest structures resulting from local disturbances, on

the one hand, and require large-scale information on the state of the forest that can be detected by

remote sensing, on the other hand. In this study, we introduce a novel method that links a forest gap

model and a canopy height map to derive the biomass distribution of the Amazon rain forest.

Location: Amazon rain forest.

Methods: An individual-based forest model was applied to estimate the variation of aboveground

biomass across the Amazon rain forest. The forest model simulated individual trees; hence, it

allowed the direct comparison of simulated and observed canopy heights from remote sensing.

The comparison enabled the detection of disturbed forest states and the derivation of a

simulation-based biomass map at 0.16 ha resolution.

Results: Simulated biomass values ranged from 20 to 490 t (dry mass)/ha across 7.8 Mio km2 of

Amazon rain forest. We estimated a total aboveground biomass stock of 76 GtC, with a coefficient

of variation of 45%. We found mean differences of only 15% when comparing biomass values of

the map with 114 field inventories. The forest model enables the derivation of additional esti-

mates, such as basal area and stem density.

Main conclusions: Linking a canopy height map with an individual-based forest model captures

the spatial variation of biomass in the Amazon rain forest at high resolution. The study demon-

strates how this linkage allows for quantifying the spatial variation in forest structure caused by

tree-level to regional-scale disturbances. It thus provides a basis for large-scale analyses on the

heterogeneous structure of tropical forests and their carbon cycle.
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1 | INTRODUCTION

Observing the dynamics of terrestrial biomass is a great challenge and

one of the major sources of uncertainties in the global carbon cycle (Le

Qu�er�e et al., 2016). In particular, tropical forests are sensitive to

anthropogenic disturbances, such as deforestation or logging, that

cause large-scale forest degradation (van der Werf et al., 2009). The

Amazon rain forest is the largest intact tropical forest, with a share of

c. 18% of global forest area (Hansen, Stehman, & Potapov, 2010).

Robust estimates of its aboveground biomass (AGB) and forest struc-

ture are essential to correctly budget carbon emissions. However, AGB

estimates diverge by a factor of two for the Amazon rain forest,
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ranging from 38.9 to 93 PgC (Houghton, Lawrence, Hackler, & Brown,

2001; Malhi et al., 2006; Saatchi, Houghton, Dos Santos Alval�a, Soares,

& Yu , 2007; Saatchi et al., 2011).

The large spread of the AGB estimates arises from diverse meth-

odological approaches at different spatial and temporal scales: ground-

based measurements, remote sensing, a combination of both, and mod-

elling. On the one hand, ground-based measurements (forest invento-

ries that are mostly at the plot scale of c. 1 ha and census intervals of 1

year or more) are interpolated in order to display the spatial distribu-

tion of biomass (Johnson et al., 2016; Malhi et al., 2006). As the num-

ber of observations is limited, it is uncertain how representative these

samples are for the whole basin (Chave et al., 2004; Marvin et al.,

2014; R�ejou-M�echain et al., 2014). Therefore, ground-based measure-

ments are often linked with remote sensing products that capture the

state of forests, in order to derive static maps of AGB (e.g., 1 km2 reso-

lution in Avitabile et al., 2016; Saatchi et al., 2011). On the other hand,

modelling approaches, such as dynamic global vegetation models

(DGVMs), simulate the temporal dynamics of biomass at regional scales

(e.g., Sitch et al., 2003). Such models are applied, for example, for inves-

tigating the impact of climate change on Amazon rain forest ecosys-

tems (e.g., Huntingford et al., 2008; Rammig et al., 2010) and can be

useful to provide hypotheses for the underlying mechanisms that drive

biomass distribution and dynamics (e.g., Hofhansl et al., 2016). Depend-

ing on the resolution of the climate input, these models mostly cover

large-scale patterns of mature forests at a spatial resolution of

> 10 km2. Thus, they may not capture forest structures and dynamics

at small scales, such as the individual tree level and effects of logging.

This may be a reason for the divergence (Johnson et al., 2016) from

maps that combine remote sensing and ground observations (Avitabile

et al., 2016; Baccini et al., 2012; Saatchi et al., 2011).

There is clearly a need for the combination of remote sensing

products and vegetation models in order to broaden our knowledge on

the dynamics, structures and carbon stocks in the Amazon rain forest.

Here, we present a method to bridge this gap by linking remote sensing

data with an individual-based forest gap model (FORMIND; Fischer

et al., 2016; K€ohler & Huth, 2004).

Individual-based forest gap models are normally applied at the

local scale to reproduce successional dynamics and forest structures

(e.g., Botkin, Janak, & Wallis, 1972; Bugmann, 2001; Shugart, 1984;

Shugart et al., 2015). In contrast to DGVMs, forest gap models simulate

processes of tree growth, establishment and mortality for each tree

individually. This concept enables the projection of forest succession,

vertical and horizontal heterogeneity, competition between individuals,

and disturbances owing to stem-based mortality. Individual-based for-

est models thereby depict forest structure more closely than area-

based models (Smith, Prentice, & Sykes, 2001).

In the present study, we expand the forest gap model FORMIND

from the local scale (stand level) to the regional scale (entire Amazon

rain forest). This regionalization implies some model adaptations. First,

we adapt the model’s mortality parameters that influence simulated

tree species composition across the Amazon. We find that annual pre-

cipitation and clay fraction are a potential proxy for tree mortality rates

in our forest model. This relationship is supported by observations

made in the field (Galbraith et al., 2013; Malhi et al., 2015; Quesada

et al., 2012). The adapted individual-based forest gap model is then

applied across the Amazon to simulate all potential successional stages

and related tree heights.

Second, we assume that canopy height is a good indicator for

the successional stage of a forest site (Dubayah et al., 2010). We

use remotely sensed canopy heights from a high-resolution (1 km2)

wall-to-wall map derived from spaceborne light detection and rang-

ing (LIDAR; Simard, Pinto, Fisher, & Baccini, 2011) as a proxy for

the successional state of the forest (inspired by Hurtt et al., 2004;

Ranson et al., 2001). We then link the observed with the simulated

canopy height and successional stage of our forest gap model to

derive the amount of AGB stored at each location. Combining both

tools results in a new, high-resolution, simulation-based AGB map

of the Amazon rain forest that takes natural and anthropogenic dis-

turbances into account.

The following research questions will guide us through the study.

1. What is the benefit of linking remote sensing data and a forest

model?

2. How well does simulated AGB represent ground observations?

3. How does forest structure influence the spatial distribution of

AGB in the Amazon rain forest?

2 | METHODS

2.1 | The individual-based forest gap model

The individual-based, forest gap model FORMIND (Fischer et al., 2016;

K€ohler & Huth, 2004) was developed specifically for the simulation of

tropical forests. Tree species are assigned to plant functional types

(PFTs) in order to represent forests of high diversity. Forests can

thereby develop through different successional stages. In FORMIND,

tree growth is mainly driven by light (photosynthetic photon flux den-

sity (PPFD)). Four main processes are calculated for each tree individu-

ally in each time step: establishment, competition for light, growth and

mortality (Figure 1; for more details see Supporting Information Appen-

dix Figure S1). An individual tree can establish if there is sufficient

space and light. As trees grow individually in the model, each tree com-

petes for space and light. Tree growth results from its carbon balance,

including photosynthetic production and respiratory losses. Mortality

of a tree depends on stem diameter and is determined stochastically.

The forest site is divided into 20 m 3 20 m patches (‘gaps’). Within

each patch, trees have no explicit position.

As a first step, FORMIND was applied to local forest stands in central

Amazon where detailed forest inventory data were available (stem size

distributions of different successional stages in the Amazon basin, Brondi-

zio & Moran, 2009; in climax stage near Manaus, Kunert, Aparecido, Higu-

chi, Santos, & Dos Trumbore, 2015). Species were assigned to three plant

functional types (early, mid and late successional trees). FORMIND was

found to reproduce observed biomass and stem size distributions of the
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different successional states (see Supporting Information Appendix S1.2

and Figure S2 for parameterization of the basic forest model).

2.2 | The regional individual-based forest gap model

Expanding the forest model from the local scale (stand level) to the

regional scale (entire Amazon rain forest) implied some model adapta-

tions. Preliminary tests showed that driving the model by spatially vari-

able PPFD (WFDEI Forcing Data; Weedon et al., 2014) alone is not

sufficient to reproduce different species (here PFTs) compositions

across the Amazon rain forest. Supported by literature (Castanho et al.,

2013; Galbraith et al., 2013; Malhi et al., 2015), we found that we can

adapt the forest model’s mortality parameter of shade tolerant, late

successional trees to match inventory data better. This key parameter

was calibrated (Lehmann & Huth, 2015; see Supporting Information

Appendix S1.3 for calibration method and objective function) to simu-

late aboveground forest biomass, mean wood density and basal area

information of 180 sites with mature forest (Lopez-Gonzalez, Lewis,

Burkitt, & Phillips, 2014; Mitchard et al., 2014). The mortality rate of

the shade tolerant species (PFT3) was the most dominant driver for

structural differences, so we calibrated only this mortality parameter to

simplify the procedure, following Occam’s razor. The calibration

resulted in 180 different parameter sets (one mortality parameter for

PFT3 (late successional trees) per site).

The calibrated mortality parameters were correlated with local

characteristics such as climatic conditions (precipitation, length of dry

season and climatic water deficit) and soil properties (classification and

chemical properties), which were derived from global maps (Supporting

Information Table S6). We investigated linear (Supporting Information

Table S4) and multivariate (Supporting Information Table S5) linear

regressions between calibrated parameters and 40 local conditions.

The calibrated mortality parameters were best replicable with a linear

function driven by precipitation and clay fraction (as a representative

for soil type). This relationship is supported by field observations, which

state that tree mortality may be related to drought characteristics

(Malhi et al., 2015) and soil physical properties (Quesada et al., 2012).
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FIGURE 1 The five working steps to derive regional maps from an individual-based forest gap model in combination with remote sensing
data: (1) run the forest model on 1km2 to equilibrium driven by local photosynthetic photon flux density (PPFD), precipitation and clay
fraction, (2) assign the simulations to the grid cells of the Amazon rainforest according to similar input, (3) link canopy height of remote
sensing data at each location with the forest simulations to identify the successional stage, (4) extract other simulated forest attributes at
the same successional state (e.g., above-ground biomass). (2)-(3) is performed for every 1km2 grid cell within the Amazon rainforest to
finally (5) derive forest maps.
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Note that the analysis was restricted to climatic and soil conditions

that were available as Amazon-wide, continuous maps. Nutrients in

soils were not considered in the analysis. FORMIND was extended by

the input annual precipitation (derived from WFDEI; Weedon et al.,

2014) and clay fraction (Wieder, Boehnert, Bonan, & Langseth, 2014)

as a proxy for mortality. Mortality is reduced with rising precipitation

and clay fraction (see Supporting Information Appendix S1.3 for func-

tion and parameter values). Our regionalization method was inspired by

regionalization techniques commonly used in hydrology, where model

parameters are linked with land surface properties (Bl€oschl & Sivapalan,

1995; Samaniego, Kumar, & Attinger, 2010).

2.3 | Large-scale simulations of the Amazon

rain forest

We applied the adapted forest model on the entire Amazon rain forest

as defined by the following criteria (as in Malhi et al., 2006): all forest

plots are located at an elevation < 1,000 m; they are categorized as

rain forest or moist deciduous rain forest (according to the Food and

Agriculture Organization definition) and have an annual mean tempera-

ture > 18 8C. In this study, we considered additionally only forest plots

that have a mean maximal canopy height > 10 m. Global and regional

datasets (climate, soil properties, canopy height map; Supporting Infor-

mation Table S6) used in this study were processed with the Climate

Data Operators (CDO, 2015).

In order to reduce computational effort, we classified the Amazon

rain forest into areas of similar environmental conditions, as follows:

mean annual precipitation (eight classes [0–500, 500–1,000, . . .,

3,500–4,000] in millimetres per annum), clay fraction (10 classes

[0–0.1, 0.1–0.2, . . ., 0.9–1]) and mean annual PPFD (16 classes [670–

690, 690–710, . . ., 970–990] in micromoles per square metre per hec-

tare). This resulted in 1,280 areas in total, which we refer to as

‘response units’ (Supporting Information Figure S2). The assumption is

that forest dynamics are similar within each response unit because of

similar input conditions (inspired by the concept of ‘hydrological

response units’ in Fl€ugel, 1995). FORMIND was used to simulate forest

succession from bare ground to climax stage over 1,000 years on an

area of 1 km2 (100 ha) for each response unit. In total, we simulated

growth of more than 50 Mio individual trees (stem diameter�10 cm)

spread over 1,280 km2 of forest. The calculations were performed in

parallel (per 1 km2) on a Linux-based computer cluster (simulation time-

<20 min on 1,000 cores). According to local environmental and soil

conditions, we assigned the simulation results of the response units to

each 1 km2 grid cell of the Amazon rain forest.

2.4 | Linking remote sensing data and the forest gap

model to identify forest successional states

After 300–500 years of simulation, the simulated forests in all regions

within the Amazon rain forest reach climax stage, where dynamics are

driven by tree mortality caused by tree fall or crowding. In the follow-

ing, we refer to simulations in climax stage as the ‘undisturbed sce-

nario’. We linked our simulation results and a wall-to-wall canopy

height map (Simard et al., 2011) in order to identify the actual succes-

sional state of forests caused by larger disturbances such as logging,

deforestation or blow-downs (Figure 1). The canopy height map was

derived from remotely sensed LIDAR data (2005 data from the Geosci-

ence Laser Altimeter System (GLAS)) and has a resolution of 1 km2.

For each grid cell, we identified the time steps (within simulation

years 0–1,000) of the forest simulation when simulated canopy height

was equal to the observed, static value of the canopy height map. The

simulations then provided additional forest attributes at the identified

time steps, such as AGB (Figure 2c), basal area or tree density. It is

therefore possible to derive regional maps of, for example, AGB for the

Amazon rain forest. In the following, we refer to this simulation as the

‘disturbed scenario’. The ‘disturbed scenario’ describes the current state

of the Amazon, whereas the ‘undisturbed scenario’ describes the

potential biomass of the Amazon under current mean climate

FIGURE 2 (a,b) Exemplary, mean above-ground biomass (AGB) of 1 km2 over time (solid lines) for the three plant functional types (early, mid
and late successional trees) from ‘bare ground’ to climax stage for: (a) annual precipitation (P) of 1000 m a-1, clay fraction of 30% and
photosynthetic photon flux density PPFD 5 720 lmol m-2 ha-1, (b) annual precipitation of 3000 m a-1, clay fraction 5 30% and PPFD 5 720
lmol m-2 ha-1. Mortality is driven by precipitation and clay fraction which results in different forest structures. The shaded range around mean
AGB shows the spatial variation (95% quantile) of 100 ha plots (100 individual 1 ha plots in 1 km2). (c) Total AGB of all 40 m 3 40 m plots
within 1 km2 (simulation time of 1000 years) over its maximum canopy height, exemplary for two response units. The shaded range around AGB
results from the different time steps when the maximum canopy height is reached.
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(Supporting Information Figure S3). The potential biomass of the

‘undisturbed scenario’ is derived by calculating the mean biomass over

years 500–1,000 of the simulation (forest in mature state). We also

tested a model version for which we hold the mortality rates constant

throughout the entire Amazon rain forest, which we refer to as the ‘dis-

turbed scenario with constant mortality’.

2.5 | Spatial resolution of the approach

The highest resolution in our approach is the individual tree that grows

within a 20 m 3 20 m patch. This patch is aggregated to 40 m 3 40 m

(2 3 2 patches, 0.16 ha) in order to mimic the footprint of a GLAS shot

(Supporting Information Figure S4). From this, we can derive frequency

distributions for AGB for the Amazon at different spatial resolutions. In

this study, we focus on the 0.16 ha scale (scale of GLAS footprint) and the

1 km2 scale (scale of canopy height map). The derived AGB map is shown

at 1 km2 resolution, which corresponds to the resolution of the remotely

sensed canopy height map. Hence, it represents the simulated AGB values

at 1 km2 resolution by taking the mean over all 40 m 3 40 m patches

(625 patches, which correspond to 100 ha51 km2). The greatest chal-

lenge lies in identifying how the canopy height map values correspond to

the simulated canopy height. As the canopy height map was validated

with the three tallest trees in a 20 m radius (approximately size of foot-

print of the LIDAR) by Simard et al. (2011), we assume that the value of

the canopy height map corresponds to the simulated mean height of the

three tallest trees within 40 m3 40 m.

2.6 | Comparison with field data

The AGB map was compared with field inventories in different succes-

sional states. AGB values for stands with mainly mature forest were

taken from Houghton et al. (2001) (21 sites, 0.5–50 ha), Mitchard et al.

(2014) and Lopez-Gonzalez et al. (2014) (186 sites, 0.25–5 ha, only the

ones independent from validation), AGB values for stands with second-

ary forest from Poorter et al. (2015) (54 sites, 0.3–5 ha). One data set

(Lopez-Gonzalez et al., 2014; Mitchard et al., 2014) including 186 sites

(0.25–5 ha, only the ones indepedent from validation) was available for

the comparison of simulated against observed basal area covering

mainly stands with mature forest.

3 | RESULTS

The individual-based forest gap model enabled the simulation of forest

dynamics and succession over time. Different environmental conditions

have an influence on tree mortality rates. This causes different species

compositions across the Amazon rain forest, which can be represented

by the ratio between early, mid and late successional trees (Figure 2a,

b). In the simulations, late successional trees clearly dominate the forest

in regions of high precipitation/clay fraction, whereas species composi-

tion is more balanced in regions of lower precipitation/clay fraction.

Linking simulated data with the canopy height map of Simard et al.

(2011) resulted in an AGB map at 0.16 ha and 1 km2 resolution

(Figure 3; coefficient of variation in Supporting Information Figure S5).

The mean simulated AGB (dry mass) stored in South American tropical

rain forests (elevation<1,000 m) is 222 t/ha; in total 76 PgC on 7.8

Mio km2. Our AGB map (Figure 3) shows a pronounced gradient

between regions of high biomass density in northeastern Amazonia

and lower biomass density in southern Amazonia. Highest values are

estimated for the north-eastern Guiana Shield and around the east

Amazon delta, with AGB up to 490 t/ha. AGB is slightly lower in the

central Amazon rain forest along the Amazon river. In western Amazon,

FIGURE 3 Map (left) of aboveground biomass (stem diameter>10 cm) in the Amazon rain forest (South American rain forest with
elevation<1,000 m) and relative frequency distributions (right) at 1 km2 resolution and at 40 m 3 40 m resolution (smallest resolution of forest
model) simulated with an individual-based forest model. Successional stages within the simulation were identified via a canopy height map
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biomass distribution varies strongly, with peaks of up to 440 t/ha. At the

northern and southern edges, biomass is reduced because of deforesta-

tion. We estimated mean AGB values (and SD) for four regions across

the Amazon basin (regions according to Feldpausch et al., 2011), as fol-

lows: Western Amazon 239699 t/ha, Brazilian Shield 1706102 t/ha,

East Central Amazon 226677 t/ha and Guiana Shield 264682 t/ha.

Our AGB map considers human-induced and natural disturbances

identified via canopy heights. Across the Amazon basin, biomass ranges

from 20 to 490 t/ha (mean 222 t/ha with an SD of 100 t/ha). If we do

not relate the canopy height map to our simulation results, we analyse

the simulated forest in an undisturbed, mature state (Figure 4; ‘undis-

turbed scenario’, see Methods for details). In this scenario, mean

biomass is higher, at 264 t/ha, and the variability of biomass is lower,

with an SD of 54 t/ha, because natural (e.g. flooding) or anthropogenic

disturbances are not considered. In the undisturbed case, total AGB is

15 PgC higher than in the disturbed scenario.

The new AGB map was tested with observed biomass from field

inventories (Houghton et al., 2001; Lopez-Gonzalez et al., 2014; Mitch-

ard et al., 2014; Poorter et al., 2015). On average, our model approach

underestimates observed biomass by c. 15% (R250.41). If several

inventories were located within one grid cell (1 km2) they were

summed up to larger sample sizes. Note that these samples are not

necessarily connected to each other. Values of sample sizes > 4 ha

(suggested size of field calibration plots in R�ejou-M�echain et al., 2014)

match particularly well with a root mean square error (RMSE)

FIGURE 4 Frequency distribution of simulated aboveground
biomass (AGB) for the simulated undisturbed scenario (mature
forests, steady state of simulations) and disturbed scenario (linked
to canopy height map).

FIGURE 5 Comparison of simulated above-ground biomass (AGB,
closest location to inventory in AGB map, Fig. 3) and observed
AGB at 114 field inventories (Houghton et al., 2001; Lopez-
Gonzalez et al., 2011; Mitchard et al., 2014; Poorter et al., 2015).
The ranges of observed AGB (horizontal grey error bars) come
from different allometries used in Mitchard et al. (2014). The error
bars for the simulated biomass (vertical grey error bars) result from
different time steps at which the observed canopy height matches
the simulated canopy height. The dashed line is the 1:1 line. R2 5

0.41; root mean square error (RMSE) and normalized (nRMSE) for
samples of sizes >4ha and for all points: RMSEsamplesize>4ha 5 61
t/ha, nRMSEsamplesize>4ha 5 0.12, RMSEall 5 73 t/ha, nRMSEall 5
0.15.

FIGURE 6 Maps (left) and relative frequency distributions (right) of (a)
basal area (in square metres per hectare) and (b) number of stems (per
hectare; stem diameter>10 cm) simulated for the Amazon rain forest
(elevation <1,000 m) with the forest model linked to a canopy height
map. (c) Stem diameter distribution of the entire Amazon rain forest on
a log–log scale.
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RMSEsamplesize>4ha561 t/ha (normalized RMSEsamplesize > 4 ha 5 0.12),

while all together (all points in Figure 5) have an RMSE (RMSEall) of 73

t/ha (normalized RMSEall 5 0.15).

We also tested a third model version (‘disturbed scenario with con-

stant mortality’), in which mortality was kept constant throughout the

Amazon (Supporting Information Figure S6). In this scenario, mean

AGB is lower, at 199 t/ha, and model performance is weaker, with

R250.37 (Supporting Information Figure S7). This model version does

not reach AGB values > 350 t/ha (Supporting Information Figure S8).

The forest model delivers additional forest attributes, such as basal

area, tree densities or stem size distributions. Figure 6a (left) shows the

spatial distribution of basal area (stem diameter>10 cm) within the

Amazon rain forest, with a mean of 26 m2/ha and a range between 0

and 48 m2/ha [relative frequency distribution Figure 6a (right)]. Tree

densities [Figure 6b (right)] range between 0 and 920 stems/ha (mean

is 484 stems/ha). Figure 6c shows the stem diameter distribution for

the entire Amazon rain forest.

4 | DISCUSSION

The estimated AGB varies between 20 and 490 t/ha across the Ama-

zon. This range is a result of a new regionalization approach and the

combination of ground data, a remote sensing product and a forest gap

model. In the following sections, we discuss the potentials and limita-

tions of combining such information.

4.1 | The regionalization approach

We developed a regionalization approach to transfer the local forest

model to the regional scale. In this approach, we analysed the potential

drivers for biomass variations in the Amazon. Studies agree that mor-

tality rates drive the spatial variation of AGB within the Amazon rain

forest (Castanho et al., 2013; Delbart et al., 2010; Galbraith et al.,

2013; Malhi et al., 2015). We tested 40 relationships between mortal-

ity rates and environmental factors (Supporting Information Tables S4

and S5). We obtained the best results with precipitation and clay frac-

tion as a proxy for mortality (regarding standard error and R2). Previous

studies support the assumption that a combination of climatic and soil

physical conditions could drive turnover rates in the Amazon (de Cas-

tilho et al., 2006; Malhi et al., 2006, 2015; Quesada et al., 2012). We

detected a decrease of mortality with increasing clay fraction. This rela-

tionship might arise from the fact that water retention is higher in clay-

rich soils, as hydraulic conductivity decreases with clay fraction (Maid-

ment, 1993). This means that a higher clay fraction compensates, in

part, the influence of dry periods on mortality in our forest model.

We developed a regionalization method that quantifies the spatial

variation of mortality via a geostatistical approach. A logical next step

would be to integrate a soil water module into the forest model. Simu-

lating at monthly time steps might detect potential stress-induced mor-

tality events during dry seasons. This could be an essential step for

potential studies exploring the impact of climate change scenarios.

However, the parameterization of a root zone soil water module for

the entire Amazon is challenging and requires further intensive studies.

4.2 | Distribution of AGB in the Amazon rain forest

The simulated AGB patterns across the Amazon rain forest (Figure 3)

are mainly driven by two factors: (a) the variation of forest dynamics

because of regionally variable mortality rates; and (b) the variation in

forest states defined by the canopy height map. The stem mortality

rates influence local forest dynamics by including small-scale disturban-

ces attributable to tree fall. Hence, different mortality rates cause dif-

ferent tree species compositions, which result in a spatial variation of

biomass throughout the Amazon rain forest (Figure 2). Simulated mean

AGB in climax stage varies between 140 and 366 t/ha (‘undisturbed

scenario’; Figure 4). This range is similar to old-growth inventories sum-

marized by Malhi et al. (2006). Our simulation result of potential bio-

mass (Supporting Information Figure S3) shows similar patterns in the

east and south to those of Malhi et al. (2006). However, the forest

model produces higher values in the north-western regions owing to

high mean precipitation resulting in low mortality rates (Supporting

Information Figure S2).

Large-scale disturbances are reflected in the canopy height map of

Simard et al. (2011). Canopy heights are lower in flooded regions along

the Amazon river compared with old-growth terra firme stands. Pio-

neer trees prevail in flooded regions (Martinez & Letoan, 2007). Defor-

ested and secondary forest stands also occur along the ‘arc of

deforestation’ (Nogueira, Fearnside, Nelson, & França, 2007; Nogueira,

Nelson, Fearnside, França, & de Oliveira, 2008). Such regions are repre-

sented by an earlier successional stage in our forest model and thereby

have lower aboveground biomass in our biomass map.

The distribution of AGB in our map resembles in some aspects the

distribution of previous AGB maps that are derived from remote sens-

ing data (Avitabile et al., 2016; Saatchi et al., 2011; Supporting Informa-

tion Figure S9). Differences result from the variation of mortality rates

in our forest model that cause differences in forest dynamics. For val-

ues > 200 t/ha, AGB values are a bit lower than in the previous maps.

In the Western Amazon, where precipitation and clay content are high,

our simulations produce higher values. The AGB frequency distribu-

tions show the same patterns for values < 200 t/ha.

Johnson et al. (2016) tested several DVGMs to derive AGB maps of

the Amazon. The AGB maps of four DGVMs all differ in their patterns

and values. DGVMs traditionally capture only undisturbed states of

mature forest, whereas forest gap models allow for simulation through

all successional states. Thus, the map presented here includes mature

forest states, as well as early-to-mid-successional states, by combining

the simulation results with height information from remote sensing.

Our simulated map resembles a map created from observations

better than the maps produced with the four DGVMs in Johnson et al.

(2016). With our approach, we obtain high simulated AGB values in the

northeast and lower simulated values towards the southwest. The rea-

son for an AGB gradient in our map lies in the nature of simulating for-

est structures on the individual tree level with stem mortality rates.

Higher mortality rates in the southwest cause stronger dynamics and

thereby lower biomass values (Figure 2). In addition, the modelling

approach enables the consideration of natural and anthropogenic dis-

turbances by linking simulations to remote sensing data.
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4.3 | Limitations of the approach

4.3.1 | Limitations of the forest model

Like every model, forest models include structural uncertainties

because of limitations in the knowledge on functional relationships and

because of simplifications (e.g., the PFT concept). The comparison of

the basal area map (Supporting Information Figure S10) with field data

shows an overestimation by 11%, whereas biomass is slightly underes-

timated (15%). This mismatch is attributable, in part, to the assumption

of merely three PFTs for the entire Amazon, for which tree geometry

(diameter at breast height–height relationship) parameters are held

constant. Additionally, biomass calculations based on allometric rela-

tionships of field inventories (Feldpausch et al., 2012) may be regionally

adapted and differ from the one used in our simulation (a common tree

geometry used for tropical forest simulations based on an allometric

function using a form factor as typically used in forestry; Pretzsch,

2010). The comparison of biomass (Figure 5) includes inventory data

for secondary and mature forests, whereas the basal area comparison

uses only mature forests. The trend, however, between basal area and

biomass is similar in inventory data and simulated data (slope in Sup-

porting Information Figure S11). This explains why the pattern of the

basal area (Figure 6a) map resembles that of Malhi et al. (2006) regard-

ing high values at the Guiana Shield, at the Amazon river close to the

Atlantic ocean, at the Ecuadorian boarder and in the south-west

(c. 718 W, 128 S). The additional inclusion of younger forests to the vali-

dation of basal area would most probably improve the correlation

between observed and simulated data (higher R2; Supporting Informa-

tion Figure S10).

4.3.2 | Limitations owing to climatological and soil data

Additional limitations arise from input data. Meteorological data (PFFD

and precipitation) come from an independent modelling approach at a

resolution of 0.58 (Weedon et al., 2014). The clay fraction map arises

from an interpolation at 8 km resolution (Wieder et al., 2014). It is diffi-

cult to quantify the influence of its spatial resolution on our AGB map.

We assume, however, that the input data are reliable to an extent that

uncertainties that arise from the input data should be smaller than

structural and methodological uncertainties.

4.3.3 | The assumption of canopy height as a proxy for

successional states and disturbed forests

This assumption is inspired by a pioneering study that linked canopy

height and a forest model to derive biomass for local forests sites in

Costa Rica (Hurtt et al., 2004). Taking the large-scale canopy height

map as a proxy for successional states has several limitations. First, the

proxy is not explicit, because canopy height can be associated with dif-

ferent stem size distributions. The canopy height map does not provide

information on forest history (i.e., a forest could be in a state of

regrowth after anthropogenic degradation or in a maturing state after a

natural disturbance event). Second, we are aware of the fact that the

canopy height map provides a proxy only at a resolution of 1 km2 and

does not capture the full spatial height heterogeneity. The canopy

height map is a product of discrete recordings by LIDAR that are

transferred into a continuous map via a modelling approach (Simard

et al., 2011). We relied on those modelled values and assumed that

they are representative. It is the best information we have at the

moment to identify large-scale successional stages within the Amazon.

It would be interesting to integrate other satellite products into

our approach, such as the normalized difference vegetation index

(NDVI; Running et al., 2004). In future studies, they could improve esti-

mates of disturbed regions with lower biomass values and lower tree

densities, because it is available at high resolution and could be taken

as a proxy for leaf area index. However, in dense mature forests, it is

known that the NDVI saturates and thus has limited capability to iden-

tify spatial variation (Hall et al., 2011; Myneni et al., 2001).

4.3.4 | Uncertainties in field inventory data

Forest inventories can include measurement errors, coordinate uncer-

tainties and unrepresentative sample plots (Saatchi et al., 2015). In

addition, inventory data often come from small plots (c. 1 ha). At such

small scales, biomass can vary strongly (Chambers et al., 2013). The val-

idation of the AGB map (Figure 5) has shown that samples with a sam-

ple size�4 ha (critical sample size in R�ejou-M�echain et al., 2014)

match the 1:1 line better than samples of smaller sizes (normalized

RMSE of 0.12 vs. 0.15). In total, mean simulated AGB is 15% lower

than mean observed AGB. One reason for this underestimation of

inventory values may be the ‘bias towards majestic forest stands’ for

field inventories (Malhi et al., 2002), a bias resulting from preferentially

selecting old-growth, gap-free inventory sites.

4.4 | Benefits from linking remote sensing and

forest models

Saatchi et al. (2015) listed the following main challenges when estimat-

ing AGB in tropical forests: (a) considering diversity in structure, wood

density and dynamics and the complexity of allometries; (b) including

natural and anthropogenic disturbances; and (c) weak relationships

between environmental conditions and biomass. They concluded that

ground and remote sensing observations need to be linked to estimate

biomass at the large scale. In our study, we additionally integrated an

individual-based forest model to estimate the AGB of the Amazon. For-

est gap models, in particular FORMIND, are developed to simulate for-

est structures of highly diverse tropical forests, thus addressing

challenges (a) and (b). Calculating forest dynamics at the individual tree

level allows for consideration of complex height structure and enables

the analysis of forest structures of disturbed and undisturbed sites

(K€ohler & Huth, 1998). In this respect, forest gap models differ from

several dynamic global vegetation models, which handle forest stands

as an average individual and are often insufficient to capture detailed

structures of tropical forests (Johnson et al., 2016). Furthermore, we

also tackled challenge (c) by analysing the influence of local environ-

mental conditions on tree mortality rate.

Bridging the gap between different spatial scales of ground-based

observations and remote sensing products with the help of an

individual-based forest gap model can provide a better understanding

of heterogeneous forest structures. Given that forest gap models
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capture the dynamics and states at the individual tree level, maps of

various forest attributes (Figure 6; tree density for different tree sizes

in Supporting Information Figure S12) at different spatial resolutions

can be derived (� 0.4 ha for AGB in Figure 3).

The approach presented here sets a foundation for further struc-

tural, large-scale analyses on disturbances (e.g., Huth, Drechsler, &

K€ohler, 2004), secondary forest regrowth (e.g., Poorter et al., 2016),

fragmentation (e.g., P€utz et al., 2014) or, with an extended model ver-

sion, on future climate scenarios (e.g., Rammig et al., 2010).

5 | CONCLUSION

Individual-based forest gap models simulate forest dynamics through-

out all successional states. By capturing forest structures at small

scales, they are able to fill a gap between large-scale vegetation model-

ling (such as DGVMs), remote sensing products and ground observa-

tions. With our approach, we perceive the opportunity to complement

the linkage between ground and remote-sensing observations (Saatchi

et al., 2011). The individual-based forest gap model represents a tool

with spatially explicit information on forest structures and dynamics.

The validation with field inventories has shown that forest structure, in

terms of species composition and forest height, has a strong influence

on the spatial variation of biomass in the Amazon rain forest. The

approach opens new doors to the analysis of highly diverse, large-scale

forest structures of the Amazon rain forest concerning carbon fluxes,

disturbances and climate change scenarios. In combination with prod-

ucts of future remote sensing missions (e.g., European Space Agency

(ESA) Biomass, Global Ecosystem Dynamics Investigation Lidar (GEDI)

or proposed Tandem-L; Moreira et al., 2015), better insights into large-

scale structures and dynamics of tropical forests will be feasible.
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